63. Synthese eines 1,2*-trans*-konfigurierten, äquatorialen Glycosyl-phosphonat-Analogen von D-*myo*-Inositol-1,4,5-trisphosphat

von László Czollner, Gisèle Baudin, Bruno Bernet und Andrea Vasella*1)

Organisch-Chemisches Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich

(29.L93)

Synthesis of a 1,2-trans-Configurated, Equatorial Glycosylphosphonate Analogue of D-myo-Inositol 1,4,5-Trisphosphate

The diphosphonate analogue 3 of D-myo-inositol 1,4,5-trisphosphate (1), a 1,2-trans-configurated, equatorial glycosylphosphonate, was synthesized and characterized as its hexasodium salt 3a. In a first approach, the silylated galactal 4 (*Scheme 1*) was transformed into the oxirane 5 and hence, by treatment with Me₃SiP(OMe)₂, into a mixture of the glycosylphosphonate 6 and its silyl ether 7. This mixture was desilylated and then treated with acetone and FeCl₃ to yield 8 and 9 (64 and 22%, resp., from 4). In a second approach, the acetates 11/12 (*Scheme 2*) were treated with P(OMe)₃/Me₃SiOTf in MeCN to afford the anomeric glycosylphosphonates 16/17 (1:1, 60%), while the trichloroacetimidate 10 gave mostly the α -D-anomer 16. The α -D-anomer 20 was obtained from 12 and P(OPh)₃. The highest yield of a β -D-phosphonate was realized by treating 12 with the cyclic phosphine 15 (\rightarrow 18/19, 40% each). The β -D-phosphonate 17 was debenzylated (\rightarrow 21) and protected to give 8. Transformation of 8 into the bormide 22 (43%) proved difficult due to the facile demethylation of the phosphorale, and was best followed by treatment of the crude product with CH₂N₂ and 2,2-dimethoxypropane. Phosphorylation of 22 yielded 41% of the (dimethoxyphosphoryl)phosphate 23. The conditions of the *Arbuzov* reaction slowly converted the bromide 23 into the bis(phosphoryl)phosphate 24 (69%), which was then deprotected. The resulting 3 was purified *via* the ammonium salt and transformed into 3a (72%).

Einleitung. – Angesichts der wichtigen biologischen Funktionen der Inositolphosphate, und insbesondere von D-*myo*-Inositol-1,4,5-triphosphat (IP_3 , 1)[1] hat es nicht an Synthesen verschiedenartiger Analoger gefehlt, von denen man Einblick in Struktur-Wirkung-Beziehungen, die Hemmung von Enzymen, die am Aufbau und an der Umwandlung der Inositolphosphate beteiligt sind, sowie therapeutische Wirkungen erwartet [2–4].

Die offensichtliche Analogie zwischen Inositolen und Monosacchariden legt es nahe, auch von Monosacchariden abgeleitete Analoge von *myo*-Inositol-phosphaten herzustellen, bei denen eine CHOH-Gruppe durch ein O-Atom ersetzt ist [5–8]. Dabei sind Analoge mit einem freien anomeren Zentrum wegen des Auftretens von Anomeren zunächst von zweitrangigem Interesse. Angesichts der Labilität von äquatorialen Glycosyl-phosphaten,

¹) Neue Adresse: Laboratorium für Organische Chemie, ETH-Zentrum, Universitätstrasse 16, CH-8092 Zürich

welche unter milden Bedingungen in die axialen Anomeren übergehen [9] [10], erscheint es auch unter diesem Gesichtspunkt vorteilhaft, hydrolyse-stabile Analoge von Phosphaten herzustellen. Diese Überlegungen führen zwangsläufig zur Wahl von Galactose-Derivaten, in denen die C(1)- und C(5)-Phosphat-Gruppen von 1 durch isostere oder nicht-isostere Phosphonat-Gruppen [11–16] ersetzt sind. Dabei hat man wiederum zwischen isopolaren und nicht-isopolaren Phosphonat-Gruppen [17–19] zu wählen, was zu einer Reihe von Analogen führt, deren Anzahl angesichts der zusätzlichen Möglichkeit der Entfernung einer oder beider OH-Gruppen an C(3) und C(4) von Galactose (entsprechend HO–C(2) und HO–C(3) von 1) um weitere Verbindungen vermehrt wird.

Wir haben uns als erstes Ziel die Synthese der Verbindung 3 vorgenommen, in welcher CH(6)OH von IP, (1) durch ein O-Atom ersetzt ist; dabei muss erwähnt werden, dass 6-Deoxyinositol-1,4,5-trisphosphat (2) biologisch aktiv ist [20]. Die 1- und 5-Phosphat-Gruppen von 1 sind in 3 durch eine isostere, nicht-isopolare bzw. eine nicht-isostere, isopolare Phosphonoyl-Gruppe ersetzt. Dabei ist die zweitgenannte Phosphonoyl-Gruppe 1,2-trans-diaguatorial konfiguriert. Die bisher bekannten Methoden zur Synthese von Glycosyl-phosphonaten sind Varianten der Michaelis-Arbuzov-Reaktion [21-26] und eröffnen einen Zugang zu 1,2-cis-konfigurierten Glycosyl-phosphonaten, die unter schärferen Reaktionsbedingungen gegebenenfalls in die 1,2-trans-diaxialen Anomeren übergeführt werden. Die hier benötigten 1,2-trans-diäquatorialen Glycosyl-phosphonate waren nicht zugänglich. Ihre Synthese erscheint gerade angesichts des störenden Verhaltens der klassischen, als Nachbargruppen aktiven Acyloxy-Gruppen²) nicht auf der Hand zu liegen. Dieser Aspekt rechtfertigt die Synthese weiterer Analoger von $IP_{a}(1)$ mit modifizierter CH(6)OH-Gruppe, obschon gezeigt wurde, dass die 6-Deoxy- und 6-Methoxy-Analogen cytosolische IP₃-Phosphatase aus Rinderaorta nur schwach hemmen [29] und von diesem Enzym nicht gespalten werden [4] [20] [30], und dass das 6-Deoxy-Analoge nur ein schwacher Ligand des IP₃-Rezeptors ist [4] [20]. Auch das 6-Deoxy-6-fluoro- und das 6-Deoxy-6-C-methyl-Analoge sind bekannt [30]. Zur Einführung der Phosphonoyl-Gruppe an C(6) von **3** sind dagegen nur die bekannten Probleme der nucleophilen Substitution an C(6) der Galactopyranose zu lösen [14] [31-33].

²) Die Umsetzung von 2-O-Acyl-3,4-O-isopropyliden-1-O-(trichloracetimidoyl)galactopyranosen mit P(OMe)₃ unter Bedingungen der Michaelis-Arbuzov-Reaktion [27] führt zu Produkten des Typs A. Die Verwendung raumbeanspruchender RO-C(2)-Gruppen wie (t-Bu)Me₂Si oder Bn eröffneten keinen Zugang zu den gewünschten Produkten [28].

1014

Ergebnisse und Diskussion. – Die 1,2-*trans*-konfigurierten Glycosylphosphonsäureester sollten sich durch nucleophile Öffnung des Oxiran-Ringes von 1,2-Anhydrozuckern mit einem Dialkylphosphit-Anion gewinnen lassen. Dies war der Fall. Das erforderte Epoxid **5** (*Schema 1*) wurde nach *Halcomb* und *Danishefsky* [34a] durch Oxidation des Galactals **4** mit Dimethyldioxiran [34b] hergestellt; diese Umsetzung erfordert Schutzgruppen vom Alkyl- oder Silylether-Typ. So ergab die Reaktion von **5** mit Dimethyl-(trimethylsilyl)phosphit in guten Ausbeuten ein Gemisch von **6** und **7**, die sich schlecht voneinander trennen liessen, so dass das Gemisch durch Behandlung mit saurem Ionenaustauscher und dann mit FeCl₃ in Aceton [35] in die Acetale **8** und **9** übergeführt wurde. Diese Acetale liessen sich leicht in Ausbeuten von 64 und 22% rein gewinnen. Leider liessen sich die Ansätze bei der Oxidation von **4** mit Dimethyldioxiran nicht ohne weiteres vergrössern, so dass wir neben geeigneteren Bedingungen nach einer Alternative suchten²).

Die bevorzugte Bildung von 1,2-*cis*-konfigurierten Glycosylphosphonsäure-estern bei der durch Me₃SiOTf (Tf = CF₃SO₃) katalysierten Umsetzung von Glycosyl-acetaten oder Glycosyl-trichloroacetimidaten in CH₂Cl₂ ist durch eine Reaktionsfolge erklärt worden, bei der eine nucleophile Substitution am anomeren Zentrum zunächst ein tetrakoordiniertes Phosphonium-Ion ergibt, das wegen der langsamen Entalkylierung konfigurationell äquilibrieren kann, wobei zur Hauptsache das 1,2-*cis*-konfigurierte Zwischenprodukt entsteht, das schliesslich zum entsprechenden Phosphonsäure-ester entalkyliert wird. Wenn es nun gelingt, entweder die nucleophile Substitution am anomeren Zentrum zunächst einter Konfigurationsumkehr ablaufen zu lassen und das tetrakoordinierte Phosphonium-Ion

Schema I

²) Nach Beendigung dieser Arbeit ist es Dr. *Tibor Gracza* gelungen, mit einer nach einem verbesserten Verfahren von Adam et al. hergestellten Dimethyldioxiran-Lösung [34c] 4 in Ansätzen von ca. 5 g problemlos in das 1,2-Anhydro-Derivat überzuführen [36]. Herrn Prof. Dr. W. Adam sei für die Vorschrift herzlich gedankt.

1016 HELVETICA CHIMICA ACTA – Vol. 76 (1993)

rasch zu entalkylieren oder eine Substitution nach dem $S_{\rm N}$ 1-Mechanismus unter Beteiligung des Lösungsmittels ablaufen zu lassen, dann sollten auch die gewünschten 1,2-transdiäquatorialen Phosphonsäure-ester zugänglich sein. Eine solche Rolle des Lösungsmittels ist für MeCN und Propiononitril bei der Glycosidierung nachgewiesen worden [37]. In der Tat liess sich bei der Phosphorylierung der bekannten 2,3,4,6-Tetra-O-benzyl-Dgalactopyranosyl-acetate 11 und 12 [38] mit P(OMe), (13) in Gegenwart von Me, SiOTf das Verhältnis des 1,2-cis-konfigurierten α -D-Galactosylphosphonates 16 zum 1,2-transkonfigurierten 17 durch Verwendung von MeCN zugunsten des β -D-Anomeren verschieben; man isolierte 30% 17, beinahe gleich viel wie α -D-Anomeres 16(Schema 2). Die Konfiguration der Glycosyl-acetate scheint kaum eine Rolle zu spielen. Das Trichloroacetimidat 10 [39] war auch hier reaktiver, führte aber mehrheitlich zum unerwünschten 16. Die Umsetzung von 12 mit Triphenyl-phosphit (14) ergab auch in MeCN in schneller Reaktion ausschliesslich das α -D-konfigurierte **20**. Die besten Ausbeuten an β -D-konfiguriertem Galactosyl-phosphonat wurde mit dem cyclischen Phosphit 15 [40] erreicht; 18 und das kristalline 19 entstanden in je ca. 40% Ausbeute und liessen sich gut voneinander trennen. Wegen der energischen Bedingungen, die zur Überführung von 19 in die freie Säure nötig sind [41], musste jedoch auf die Verwendung von 19 verzichtet werden.

Schema 2

Die Struktur und insbesondere die Konfiguration am anomeren Zentrum der Verbindungen 6-9 und 16-21 geht eindeutig aus den NMR-Spektren hervor. Werte für J(1,2), ${}^{2}J(P,H-C(1))$, ${}^{3}J(P,H-C(2))$ von 8,4–10,5 Hz (6– 9, 17, 19, 21; Tab. 1) sind charakteristisch für die ${}^{4}C_{1}$ -Konformation von β -D-Glycopyranosyl-phosphonaten [25] [42], -phosphin-oxiden und -phosphin-sulfiden [43]. Die ⁴C,-Konformation dieser Verbindungen wird zudem durch die Werte von ³J(P,C) (15,5-18,5 Hz; Tab. 2) zwischen P und C(3) bzw. C(5) bestätigt [25] [42-44]. C(1) erscheint bei 73,9–77,9 ppm mit ${}^{1}J(P,C) = 164,4-171,2$ Hz. Die Konstitution von 8 und 9 wird in den ${}^{13}C$ -NMR-Spektren durch die Verschiebungswerte der Isopropyliden-Gruppen [45-47] belegt. J(1,2) und J(2,3) von 16 und 20 weisen auf eine abgeflachte ${}^{4}C_{1}$ -Konformation hin. ${}^{3}J(P,H-C(2))$ von 19,9 (16) und 24,0 Hz (20) beweisen die antiperiplanare Anordnung der P-C(1)- und der H-C(2)-Bindung. Die ³J(P,C(3))- und ³J(P,C(5))-Werte sind, wie für eine synclinale Anordnung der entsprechenden Bindungen erwartet [25] [42-44], klein. Die entsprechenden Werte von 18 (12,1 und 8,8 Hz) dagegen zeigen, dass im Konformationsgleichgewicht eine Konformation mit zur P-C-Bindung antiperiplanar angeordneten C(2)-C(3)- und O-C(5)-Bindungen dominiert. Das ist der Fall in einer (deformierten?) Wannenkonformation (^{14}B oder B_{24}). Dieser Befund wird durch das ¹H-NMR-Spektrum von 18 gestützt. Obwohl sich die Signale zum Teil überlagern, kann aufgrund des Fehlens einer grossen ${}^{3}J(P,H-C(2))$ -Kopplungskonstanten (nur 7,6 Hz) das Vorliegen eines ähnlichen Konformeren wie bei 16 und 20 ausgeschlossen werden. J(1,2) und J(4,5) sind mit einer Boot-Konformation von 18 vereinbar. Diagnostisch bedeutsam sind auch NOE-Experimente; so führte eine Einstrahlung auf die H-C(3)-Resonanz von 20 zu einem Effekt (20%) für H-C(5)und umgekehrt, jedoch zu keiner Integralsveränderung des H-C(1)-Signals.

Die hydrogenolytische Debenzylierung von 17 führte in 92% Ausbeute zum kristallinen Tetrol 21, das nach bekannter Vorschrift [48] [49] 90% des kristallinen 3,4-O-Isopropyliden-Derivates 8 und ca. 5% des 4,6-O-Isopropyliden-Isomeren 9 ergab. Obschon die Substitution der primären OH-Gruppe in 3,4-O-Isopropyliden-galactopyranosiden durch Bromid bekannt ist [31] [50] [51], erwies sich die Umwandlung des Diols 8 in den Bromoalkohol 22 wegen der leicht erfolgenden Entalkylierung des Phosphonsäure-esters als heikel. Das beste Ergebnis wurde durch Behandlung von 8 mit N-Bromosuccinimid (NBS) und PPh, in Tetramethylharnstoff erzielt, wobei selbst bei schonender Aufarbeitung eine Umsetzung des angesäuerten Rohproduktes erst mit Diazomethan und dann mit 2,2-Dimethoxypropan nötig war, um eine Ausbeute von 43% zu erreichen. Die freie OH-Gruppe von 22 wurde mit (PhO), P(O)Cl in Pyridin [52] in mässigen Ausbeuten in den Phosphorsäure-ester 23 übergeführt und dieser einer Arbuzov-Reaktion [27] [53] in P(OMe), unterworfen. Die Umsetzung verlief langsam und erforderte die periodische Zugabe von P(OMe)₁. Chromatographie des Rohproduktes ergab den Bis(phosphoryl)phosphat 24 (69%). Zur Entfernung der Schutzgruppen wurde 24 bis zum Verschwinden der UV-aktiven Produkte einer Hydrogenolyse in Gegenwart von Adam's Katalysator unterworfen, die Phosphat- und Phosphonat-Gruppen des Rohprodukts mit Me, SiBr in die Silyl-ester übergeführt [54] [55] und diese methanolytisch gespalten. Zur Reinigung wurde das Rohprodukt als Ammonium-Salz chromatographiert, das Ammonium-Salz in die Diphosphonophosphorsäure 3 und diese schliesslich in das entsprechende Hexanatrium-Salz 3a übergeführt, welches in einer Ausbeute von 72% isoliert wurde. Eine Lösung von 3a in D₂O liess sich während 4 Tagen bei Raumtemperatur unverändert aufbewahren.

Das Bromid **22** ist charakterisiert durch die OH-Bande bei 3420 cm⁻¹ und die $[M + 1]^*$ -Signale bei m/z 377,2 und 375,1. Abgesehen von der Hochfeldverschiebung von C(6) (29,59 ppm) gleichen die NMR-Spektren von **22** denjenigen von **8** (*Tab. 1* und 2). Die Einführung der Phosphat-Gruppe in **23** äussert sich in einem zusätzlichen P-Signal bei -13,54 ppm, in einer Tieffeldverschiebung von H-C(2) ($\delta\Delta$ = 1,1 ppm), H-C(1), H-C(3) ($\delta\Delta$ je *ca.* 0,4 ppm) und C(2) ($\delta\Delta$ = 7,2 ppm) und in einer zusätzlichen Aufspaltung der Signale von H-C(2) (³*J*(H, PO-C(2)) = 9,3 Hz), C(1) (³*J*(C, PO-C(2)) = 8,4 Hz) und C(2) (²*J*(C, PO-C(2)) = 6,2 Hz). Die kleineren Werte für *J*(1,2) und *J*(2,3) von **23** und **24** zeigen eine abgeflachte ⁴*C*,-Konformation (in Richtung *S*,) an. Die Ursache dieser Abflachung

H-C(1) H-C(2	() H-C(3)	H-C(4)	H-C(5)	J(1,2)	J(2,3)	J(3,4)	J(4,5)	2J(P,H-C(1))	³ <i>J</i> (P,H–C(2))	⁴ J(P,H–C	(3)) 5J(P,H-C(4)
6 3,62	4,10	3,53	3,96	3,37	10,2	9,1	2,2	< 0,5	8,4	10,3	8,0	
7 3,60	4,35	3,52	4,12	3,35	9,2	8,9	1,6	< 1,0	9,5	0'6		<1,0
7 3,70	4,27	3,61	3,98	3,64-3,59	10,0	10,0	2,7	<0,5	10,0	10,0		
9 3,93	4,30	3,63-3,52	3,925	3,49	10,1	10,4	2,2	0	10,1	ca. 10,4		0
1 ^b)3,68	3,78	3,51	3,86	3,60-3,57	10,5	9,4	3,4	0,9	9,4	6,9	1,1	6,0
3c)3,47	4,26	3,81–3,74	3,96	3,81–3,74	9,5	9,5	3,2	<1,0	9,6	9,5, 9,5		0
9 3,65	4,11	3,60	4,23	3,36	10,3	9,1	3,6	<1,0	8,7	9,8	1,0	<1,0
8 3,50	3,91	4,08	4,21	3,85-3,77	10,8	6,9	5,5	2,0	10,1	10,5	0,6	1,2
2 3,50	3,92	4,08	4,30	3,91	10,6	7,0	5,5	2,2	10,5	(p	<1,0	1,0
3 3,94	5,02	4,41	4,32	3,89	7,6	5,8	5,9	2,1	12,5	10,4, 9,3		0,5
4 3,88	4,95	4,33	4,22	4,06 ^e)	8,3	6,1	5,8	2,0	12,0	10,3, 9,2		
6 4,44	4,16	4,09	4,01	4,34	4,6	7,3	2,8	3,3	13,0	19,9		0
8 4,49	3,70	4,07-4,03	4,07-4,03	4,39	3,6	0	(p	2,8	ca. 10	7,6		
0 4,76	4,31	4,21	4,07	4,40-4,35	5,2	7,7	2,9	2,9	12,1	24,0		0

	C (1)	C(2)	C(3)	C(4)	C(5)	C(6)	P_C(1)
6	75,76 (J =164,4)	67.10	77.30 (<i>J</i> ≈18.7)	70.92	81.15 (J = 15.7)	61.73	23.48
17	75,18 (J = 171,2)	75,22	84,64 (J = 17,3)	73,55	79.48 (J = 16.3)	68.66	22.70
19	76,92 (J =163,6)	75,02 (J = 2,2)	84,13 (J = 17,0)	73,84	78,27 (J = 16,2)	69,14	10.23
21 ^b)	74,58 (J =170,6)	67,30 (J = 3,1)	74,52 (J = 18,0)	69,34	81,46 (J = 15,5)	61,73	25,48
3c)d)	78,05 ^e)	78,95°)	73,91°)	73,71°)	79,26°)	33,66	14,05f)
9	74,57 (<i>J</i> =166,6)	68,12 ^e)	73,28 (J = 18,5)	67,01°)	70,77 (J =15,9)	62,68	22,39
8.	73,90 (J =170,5)	68,89	79,19 (J = 18,2)	73,51	79,14 (J =15,6)	61,96	24,06
22	74,50 (<i>J</i> =168,6)	68,34	78,67 (J =17,3)	72,94	77,68 (J =16,4)	29,59	21,98
23	74,36 (J =173,9)g)	75,54 (<i>J</i> =6,2)	77,66 (J =15,5)	72,72	76,13 (J =11,1)	29,00	18,93f)
24 ^d)	74,24 ^e)	73,83°)	74,63°)	73,10 ^e)	76,20 ^e)	27,27	19,28f)
16	69,27 (<i>J</i> =161,2)	73,82	76,58 (J = 4,1)	75,29	75,38 (J =< 2)	67,34	24,38
18	68,34 (<i>J</i> =165,5)	75,48 (J =3,2)	75,28 (J = 12,1)	72,98	74,18 (<i>J</i> =8,8)	65,41	13.87
20	69,99 (<i>J</i> =160,5)	73,75	75,34 (<i>J</i> =5,1)	75,12	77,08 (<i>J</i> =2,3)	67,11	14,23

Tab. 2. Ausgewählte ¹³C- und ³¹P-NMR (CDCl₃) chemische Verschiebungswerte [ppm] der Galactopyranosylphosphonate. J(P,C) [Hz] in Klammern ^a)

^a) Die Zuordnung der Signale basiert auf dem Vergleich mit Glycopyranosyl-phosphonaten [25] [42], -phosphin-oxiden und -phosphin-sulfiden [43]. C(3) von β -D-Glycopyranosyl-phosphonaten besitzt eine grössere J(P,C) als C(5) [25]. ^b) In D₂O. ^c) Hexanatrium-Salz in D₂O. ^d) ³¹P-entkoppeltes Spektrum. ^e) Zuordnung kann vertauscht sein. ^f) PO-C(2) bei 4,99 (3), -13,54 (23) und -13,39 ppm (24); P-C(6) bei 19,46 (3) und 29,57 ppm (24). ^g) ³J(P,C(1)) = 8,4 Hz.

dürfte die sterische Wechselwirkung zwischen der Phosphonat-Gruppe an C(1) und der Phosphat-Gruppe sein. Die 6-Phosphonat-Gruppe von **24** erscheint bei hohem Feld (29,57 ppm). Sie koppelt mit CH₂(6) (18,3 Hz) und H–C(5) (8,9 Hz). Dieses Signal und die ³¹P-Signale bei 19,28 und –13,39 ppm sind typisch für eine (Dialkoxyphosphoryl)methyl-, eine äquatoriale, an C(1) gebundene Dialkoxyphosphoryl- und eine (Diarylphosphat)-Gruppe [22] [25] [56]. Im FAB-MS von **3a** erscheinen bei m/z 520,9, 498,9, 476,9, 454,9 und 432,9 die ([M + 1]⁺)-Signale der Hexa-, Penta-, Tetra-, Tri- und Dinatrium-Salze von **3.** Das ³¹P-NMR-Spektrum von **3a** ist charakterisiert durch Signale bei 19,46 (P–C(6)), 14,05 (P–C(1)) und 4,99 ppm (PO–C(2)). Die vicinalen J(H,H)-Werte von **3a** gleichen stark denjenigen von **21** und bestätigen die ⁴C₁-Konformation von **3**.

Wir danken dem Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung und der Firma F. Hoffmann-LaRoche AG, Basel, für die Unterstützung dieser Arbeit.

Experimenteller Teil

Allgemeines. S. [57]. Lsgm. wurden destilliert (P(OMe)₃ über Na, Tetramethylharnstoff und Hexamethylphosphortriamid (HMPT) über CaH₂). DC: Merck-Kieselgelplatten 60 F_{254} , Merck, 0,25 mm); Detektion durch Besprühen mit einer sauren KMnO₄-Lsg. (0,1N KMnO₄/1N H₂SO₄ 1:1), einer sauren Vanillin-Lsg.(5% Vanillin in konz. H₂SO₄) oder MOSTAIN (21 g Ammoniummolybdat, 1 g Ce(SO₄)₂ und 31 ml konz. H,SO₄-Lsg. in 500 ml H,O) und Erhitzen auf *ca*. 200°.

3,4,6-Tris-O-[(tert-butyl)dimethylsilyl]-β-D-galactopyranosylphosphonsäure-dimethylester (6) und 3,4,6-Tris-O-[(tert-butyl)dimethylsilyl]-2-O-(trimethylsilyl)-β-D-galactopyranosylphosphonsäure-dimethylester (7). Eine Lsg. von Dimethyldioxiran [34] in Aceton (18 ml) wurde bei 0° tropfenweise in eine Lsg. von 4 (500 mg, 1,02 mmol) [34] in CH₂Cl₂ (10 ml) gegeben. Nach 50 min Rühren wurde das Lsgm. unter N₂ abdestilliert, der Rückstand 5 1 h i. HV. getrocknet, in THF (3 ml) aufgenommen, bei -78° mit einer Lsg. von Dimethyl-(trimethylsilyl)phosphit (3,7 ml, 19,4 mmol) in THF (2 ml) und anschliessend mit einer frisch zubereiteten Lsg. von ZnCl₂ in Et₂O (2,25 ml, ca. 1M) versetzt. Die Lsg. wurde bei -78° 2 h gerührt, innert 2,5 h auf RT. erwärmt und normal aufgearbeitet (AcOEt, ges. NaHCO₃-Lsg.). FC (AcOEt/Hexan 1:5 \rightarrow 1:3) ergab 6/7 (629 mg, 96%); je nach Ansatz zwischen 1:0 und *ca*. 3:1.

Daten von **6**: R_{c} (AcOEt/Hexan 1:2) 0,79. ¹H-NMR (400 MHz, CDCl₃): 4,10 (br. *tdd*, $J \approx 10,3,9,1,1,9$; nach Zugabe von D₂O: *td*, J(P,H) = 10,3, J = 10,3,9,1, H–C(2)); 3,96 (br. *d*, $J \approx 2,0, H–C(4)$); 3,85 (*d*, J(P,H) = 10,4, MeO); 3,82 (*d*, J(P,H) = 10,7, MeO); 3,68 (*dd*, J = 10,1,6,7, H–C(6)); 3,64 (*dd*, J = 10,0,7,0, H–C(6)); 3,62 (*dd*, J(P,H) = 8,4, J = 10,1, H–C(1)); 3,53 (*ddd*, J(P,H) = 0,8, J = 9,1,2,2, H–C(3)); 3,37 (*t*, J = 6,8, H–C(5)); 3,35 (*d*, J(P,H) = 8,4, J = 10,1, H–C(1)); 3,53 (*ddd*, J(P,H) = 0,8, J = 9,1,2,2, H–C(3)); 3,37 (*t*, J = 6,8, H–C(5)); 3,35 (*d*, J(P,H) = 0,8, J = 9,1,2,2, H–C(3)); 3,37 (*t*, J = 6,8, H–C(5)); 3,35 (*d*, $J = 2,0, mit D_2 O$ austauschbar, OH–C(2)); 0,93 (*s*, *t*-Bu); 0,89 (*s*, *t*-Bu); 0,88 (*s*, *t*-Bu); 0,16 (*s*, MeSi); 0,14 (*s*, 2 MeSi); 0,13 (*s*, MeSi); 0,09 (*s*, 2 MeSi). ¹³C-NMR (50 MHz, CDCl₃): 81,15 (*dd*, J(P,C) = 15,7); 77,30 (*dd*, J(P,C) = 18,7); 77,50 (*dd*, J(P,C) = 164,4, C(1)); 70,92 (*d*); 67,10 (*d*); 61,73 (*t*, C(6)); 54,28 (*dq*, J(P,C) = 6,2, MeO); 53,14 (*dq*, J(P,C) = 6,2, MeO); 26,26 (*q*, *Me*₃C); 25,95 (*q*, *Me*₃C); 25,73 (*q*, *Me*₃C); 18,64 (*s*, Me₃C); 18,48 (*s*, Me₃C); 18,07 (*s*, Me₃C); -3,73 (*q*, MeSi); -4,04 (*q*, MeSi); -4,34 (*q*, MeSi); -5,04 (*q*, MeSi); -5,37 (*q*, MeSi); -5,40 (*q*, MeSi). ³P-NMR (81 MHz, CDCL); 23,48.

Daten von **7**: R_t (AcOEt/Hexan 1:2) 0,84. ¹H-NMR (300 MHz, CDCl₃): 4,35 (*q*, *J*(P,H) = 9,0, *J* = 9,0, H–C(2)); 4,12 (br. *s*, H–C(4)); 3,78 (*d*, *J*(P,H) = 10,6, MeO); 3,77 (*d*, *J*(P,H) = 10,6, MeO); 3,65 (*d*, *J* = 7,0, 2 H–C(6)); 3,60 (*t*, *J*(P,H) = 9,5, *J* = 9,5, H–C(1)); 3,52 (*dd*, *J* = 8,9, 1,6, H–C(3)); 3,35 (br. *t*, *J* = 7,0, H–C(5)); 0,96 (*s*, *t*-Bu); 0,93 (*s*, *t*-Bu); 0,88 (*s*, *t*-Bu); 0,17 (*s*, 4 MeSi); 0,16 (*s*, 2 MeSi); 0,14 (*s*, MeSi); 0,13 (*s*, 2 MeSi).

3,4-O-Isopropyliden- β -D-galactopyranosylphosphonsäure-dimethylester (**8**) und 4,6-O-Isopropyliden- β -Dgalactopyranosylphosphonsäure-dimethylester (**9**). *a*) Ein Gemisch aus 6/7 (1,26 g, von zwei 500 mg Ansätzen von **4**) und Dowex 50W x 2 (12,6 g, H⁺-Form) in MeOH (50 ml) wurde 4 h bei 60° gerührt, auf RT. gekühlt und eingedampft. Der Rückstand wurde 1 h i. V. getrocknet, in trockenem Aceton (50 ml, getrocknet über 4-Å-Molekularsieb) gelöst, mit einer Lsg. von FeCl₃ (1 mg) in Aceton (8 ml) versetzt und 2 h gerührt. Nach Zugabe von Na₂CO₃·10 H₂O (8,5 g) wurde die Suspension 30 min bei RT. weitergerührt und anschliessend filtriert. Eindampfen des Filtrates und FC (AcOEt/MeOH/H₂O 90:8:2) ergaben **8** (408 mg, 64% bzgl. **4**) und **9** (138 mg, 22%).

b) Eine Suspension von **21** (1,09 g, 4,0 mmol) in 2,2-Dimethoxypropan (15 ml) wurde mit Camphersulfonsäure (46,5 mg, 0,2 mmol) versetzt und 72 h intensiv bei RT. gerührt. Nach Zugabe von Et₃N (3,0 ml, 21 mmol) wurde weitere 10 min gerührt. Das Gemisch wurde eingedampft, der Rückstand mit Toluol (3×20 ml) versetzt und erneut eingedampft. Der Rückstand wurde in MeOH/H₂O 10:1 (50 ml) gelöst und 2 h unter Rückfluss gekocht. Abdestillieren des Lsgm. und FC (AcOEt/MeOH 4:1) des Rückstandes ergaben **8** (1,12 g, 90%) als farblose Kristalle.

Daten von 8: R_1 (AcOEt/MeOH/H₂O 90:8:2) 0,26. Schmp. 158–159° (MeOH/Et₂O). $[\alpha]_D^{25} = +79,3$ (*c* = 1). IR (KBr): 3425s, 3245s, 3000w, 2960w, 2930w, 2880w, 2850w, 2840w, 1640w, 1470w, 1450w, 1435w, 1385m, 1370m, 1360 (sh), 1330w, 1295w, 1275 (sh), 1250s, 1220m, 1205m, 1190m, 1165m, 1150m, 1120w, 1095m, 1090m, 1060s, 1040s, 1020s, 970w, 920w, 905w, 870m, 840w, 830m, 800m, 770w, 755w, 740w, 660w. ¹H-NMR (400 MHz, CDCl₁): 4,21(*ddd*, J(P,H) = 1,2, *J* = 5,5, 2,0, H–C(4)); 4,08 (*ddd*, J(P,H) = 0,6, *J* = 6,9, 5,6, H–C(3)); 3,98–3,89 (*m*, 2H; nach Zugabe von D₂O: 3,96, *dd*, *J* = 9,2, 4,9, H–C(6)); 3,91 (*td*, J(P,H) = 10,5, *J* = 10,5, 7,0, H–C(2)); 3,89 (*d*, J(P,H) = 10,4, MeO); 3,85 (*d*, J(P,H) = 10,7, MeO); 3,85–3,77 (*m*, nach Zugabe von D₂O veränderte Signale, H–C(5), H–C(6)); 3,57 (br. *s*, austauschbar mit D₂O, OH–C(2)); 3,50 (*dd*, *J* = 10,8, 10,1, H–C(1)); 2,30 (br. *s*, austauschbar mit D₂O, OH–C(6)); 53,80 (*dd*, J(P,C) = 18,2); 79,14 (*dd*, J(P,C) = 15,6); 73,90 (*dd*, J(P,C) = 170,5, C(1)); 73,51 (*d*); 68,89 (*d*); 61,96 (*t*, C(6)); 53,80 (*dq*, J(P,C) = 6,9, MeO); 53,38 (*dq*, 2(P,C) = 6,3, MeO); 27,75 (*q*, Me); 26,04 (*q*, Me).³P-NMR (81 MHz, CDCl₃): 24,06. CI-MS: 330,4 (21, [*M* + NH₄]⁺), 313,4 (100, [*M* + 1]⁺). Anal. ber. für C₁₁H₂₁O₈P (312,25): C 42,31, H 6,78, P 9,92; gef.: C 42,09, H 7,02, P 9,69.

Daten von 9: R_t (AcOEt/MeOH/H₂O 90:8:2) 0,12. $[\alpha]_D^{25} = +16,4$ (c = 1, MeOH). IR (KBr): 3420s, 2995m, 2965m, 2915w, 2860w, 1640w, 1455w, 1385m, 1270 (sh), 1245s, 1200s, 1180m, 1150m, 1095s, 1075s, 1035s, 980m, 940w, 910w, 890w, 860m, 850m, 820m, 780m, 750w, 700w, 610m. ¹H-NMR (400 MHz, CDCl₃): 4,23 (br. d, J = 3, 6, H-C(4)); 4,11 ($q, J(P,H) \approx 9, 8, J \approx 9, 8, H-C(2)$); 4,03 (ddd, J(P,H) = 0, 6, J = 12, 9, 1, 8, H-C(6)); 3,95 (d, J(P,H) = 10, 3, MeO); 3,93 (dd, J = 12, 9, 1, 6, H-C(6)); 3,86 (d, J(P,H) = 10, 7, MeO); 3,65 (dd, J(P,H) = 8, 7, J = 10, 3, H-C(1)); 3,60 (ddd, J(P,H) = 1, 0, J = 9, 1, 3, 6, H-C(3)); 3,36 (br. $s, w_{1/2} = 4, 0, H-C(5)$); 1,47 (s, Me); 1,43 (s, Me). ¹³C-NMR (50 MHz, CDCl₃): 98,52 (s, Me_2 C); 74,57 (dd, J(P,C) = 166, 6, C(1)); 73,28 (dd, J(P,C) = 18,5); 70,77 (dd, J(P,C) = 15,9); 68,12 (d); 67,01 (d); 62,68 (t, C(6)); 54,70 (dq, J(P,C) = 6, 8, MeO); 54,28 (dq, J(P,C) = 6, 5, MeO); 29,08 (q, Me); 18,48 (q, Me). ³³P-NMR (81 MHz, CDCl₃): 22,39. Anal. ber. für C₁₁H₂₁O₈P (312,25): C 42,31, H 6,78, P 9,92; gef.: C 41,99, H 6,51, P 9,65.

2,3,4,6-Tetra-O-benzyl- α -D-galactopyranosylphosphonsäure-dimethylester (16) und 2,3,4,6-Tetra-O-benzyl- β -D-galactopyranosylphosphonsäure-dimethylester (17). a) Zu einer Lsg. von 12 [38] (4,66 g, 8,0 mmol) in MeCN wurden bei -10° gleichzeitig P(OMe)₃ (2,84 ml, 24,0 mmol) und Me₃SiOTf (2,2 ml 12 mmol) innerhalb 8 min getropft. Nach 30 min intensivem Rühren wurden 0,5 ml H₃O zugetropft. Eindampfen, normale Aufarbeitung (AcOEt, ges. NaHCO₃-Lsg. und H₂O) und FC (500 g SiO₂, AcOEt/Hexan $1:2 \rightarrow 1:1$) ergaben **16** (1,413 g, 28%) als Öl und **17** (1,537 g, 30%) als weisse Nadeln.

b) Eine Lsg. von 2,3,4,6-Tetra-O-benzyl-D-galactopyranose [38] [58] (2,7 g, 5,0 mmol) und CCl₃CN (4,5 ml, 45 mmol) in CH₂Cl₂ (40 ml) wurde bei RT. mit fein pulverisiertem, getrocknetem K₂CO₃ (6,2 g, 45 mmol) versetzt, 48 h intensiv gerührt und durch *Celite* filtriert. Das Filtrat wurde eingedampft und der Rückstand (**10**) in abs. CH₂Cl₂ (10 ml) gelöst und bei 0° gleichzeitig mit P(OMe)₃ (886 μ l, 7,5 mmol) und Me₃SiOTf (1,1 ml 6,0 mmol) tropfenweise versetzt. Das Gemisch wurde 30 min intensiv gerührt, mit H₂O (0,6 ml) versetzt, eingedampft und normal aufgearbeitet (AcOEt, ges. NaHCO₃-Lsg. und H₂O). FC (300 g SiO₂, AcOEt/Hexan 1:2 \rightarrow 1:1) ergab **16** (423 mg, 13%) und **17** (350 mg, 11%).

Daten von 16: R_r (AcOEt/Hexan 1:1) 0,35. $[\alpha]_{D}^{25} = +5,1$ (c = 3). IR (CHCl₃): 3080w, 3060w, 3000m, 2960w, 2920w, 2860w, 1450m, 1370w, 1310w, 1240m, 1200m, 1110s, 1090s, 1080s, 1050s, 1030s, 910w, 870w, 830w, 690m. ¹H-NMR (400 MHz, CDCl₃): 7,34-7,24 (m, 20 arom. H); 4,74, 4,62 (AB, J = 11,4, PhCH₂); 4,71 4,52 (AB, J = 11,7, PhCH₂); 4,70, 4,65 (AB, J = 11,7, PhCH₂); 4,70, 4,65 (AB, J = 11,7, PhCH₂); 4,71 4,52 (AB, J = 11,7, PhCH₂); 4,70, 4,65 (AB, J = 11,7, PhCH₂); 4,71 4,52 (AB, J = 11,7, PhCH₂); 4,70, 4,65 (AB, J = 11,7, PhCH₂); 4,70, 4,65 (AB, J = 11,7, PhCH₂); 4,70, 4,65 (AB, J = 11,7, PhCH₂); 4,44 (dd, J(P,H) = 13,0, J = 4,6, H–C(1)); 4,34 (br. dr, $J \approx 7,3$, 3,6; Einstrahlen bei 4,01: br. dd, J = 7,3, 3,9; Einstrahlen bei 3,58: br. dd, J = 7,3, 3,3, H–C(5)); 4,16 (ddd, J(P,H) = 19,9, J = 7,3,4,7; Einstrahlen bei 4,44: br. dd, J = 19,9,7,3, H–C(2)); 4,09 (m; Einstrahlen bei 4,01: br. d, $J \approx 7,3$, H–C(3)); 4,01 (t, $J \approx 3,1$; Einstrahlen bei 4,34: d, J = 2,8, H–C(4)); 3,83 (dd, J = 10,8,7,6; Einstrahlen bei 4,34: d, J = 10,8; 7,6; Einstrahlen bei 4,34: d, J = 10,8, 7,6; Einstrahlen bei 4,34: d, J = 10,8, 10,8; Einstrahlen bei 3,70: d, J = 7,6, H–C(6)); 3,74 (d, J(P,H) = 10,6, MeO); 3,69 (d, J(P,H) = 10,7, MeO); 3,58 (dd, J = 10,8, 4,4; Einstrahlen bei 4,34: d, J = 10,8, 10,8 (d, J = 10,8, 10,8; 138,20 (s); 137,86 (s); 128,24–127,50 (mehrere d); 76,58 (dd, J(P,C) = 4,1); 75,38 (br. d); 75,29 (d); 73,83 (d); 73,56 (t, PhCH₂); 73,25 (t, PhCH₂); 73,10 (t, PhCH₂); 70,04 (t, PhCH₂); 69,27 (dd, J(P,C) = 161,2, C(1)); 67,34 (t, C(6)); 53,42 (dq, J(P,C) = 6,6, MeO); 52,68 (dq, J(P,C) = 6,8, MeO). ³ P-NMR (81 MHz, CDCl₃): 24,38. CI-MS (C₄H₁₀): 661,4 (18), 647,6 (18), 646,8 (13), 634,5

Daten von **17**: R_t (AcOEt/Hexan 1:1) 0,30. Schmp. 101–103° (AcOEt/Hexan). $[\alpha]_D^{25} = +29,5 (c = 2)$. IR (KBr): 3440m, 3080w, 3060w, 3020w, 2950w, 2900w, 2860w, 1550w, 1540w, 1500w, 1460w, 1450m, 1390w, 1370w, 1350w, 1330w, 1310w, 1250s, 1210w, 1150m, 1130m, 1110s, 1100s, 1080s, 1060s, 1050s, 1030m, 1000m, 940w, 910w, 850w, 830w, 780m, 740s, 700s. 'H-NMR (400 MHz, CDCl₃): 7,37-7,22 (m, 20 arom. H); 4,98, 4,61 (*AB*, *J* = 11,7, PhCH₂); 4,94,86 (*AB*, *J* = 10,2, PhCH₂); 4,76, 4,72 (*AB*, *J* = 11,7, PhCH₂); 4,47, 4,43 (*AB*, *J* = 11,8, PhCH₂); 4,27 (*q*, *J*(P,H) = 10,0, *J* = 10,0; Einstrahlen bei 3,70: *t*, *J* = 10,0, H–C(2)); 3,98 (br. *d*, *J* = 2,7; Einstrahlen bei 3,70: br. *s*, H–C(4)); 3,79 (*d*, *J*(P,H) = 10,4, MeO); 3,72 (*d*, *J*(P,H) = 10,6, MeO); 3,70 (*t*, *J*(P,H) = 10,0, *J* = 10,0; Einstrahlen bei 3,89: *d*, *J* = 10,0, H–C(1)); 3,61 (*dd*, *J* = 10,0, 2,7; Einstrahlen bei 4,27: starke Veränderung; Einstrahlen bei 3,98: *d*, *J* = 10,0, H–C(3)); 3,64–3,54 (m, H–C(5); teilweise verdeckt durch H–C(3), 2 H–C(6)). ¹³C-NMR (50 MHz, CDCl₃): 138,72 (*s*); 138,35 (*s*); 138,14 (*s*); 137,81 (*s*); 128,39–127,41 (mehrere *d*); 84,64 (*dd*, *J*(P,C) = 17,3); 79,48 (*dd*, *J*(P,C) = 16,3); 75,28 (*t*, PhCH₂); 75,22 (*d*); 75,18 (*dd*, *J*(P,C) = 6,7, MeO); 52,76 (*dq*, *J* = 6,6, MeO). ³¹P-NMR (81 MHz, CDCl₃): 22,70. CI-MS (C₄H₁₀): 634,6 (25), 633,4 (100, [*M* + 1]⁺). Anal. ber. für C₂₈H₄₀O₈P (632,66): C 68,34, H 6,53; gef.: C 68,44, H 6,75.

5,5-Dimethyl-2-oxo-2-(2',3',4',6'-tetra-O-benzyl- α -D-galactopyranosyl)-1,3,2 λ 5-dioxaphosphorinan (18) und 5,5-Dimethyl-2-oxo-2-(2',3',4',6'-tetra-O-benzyl- β -D-galactopyranosyl)-1,3,2 λ 5-dioxaphosphorinan (19). Eine Lsg. von 12 [38] (1,75 g, 3,0 mmol) in MeCN (6,0 ml) wurde bei -40° gleichzeitig mit P(OMe)₃ (0,74 ml, 4,5 mmol) und Me₃SiOTf (1,4 ml, 7,6 mmol) tropfenweise versetzt (10 min) und 3 h intensiv gerührt, wobei man langsam auf RT. erwärmen liess. Nach Zugabe von H₂O (1 ml) wurde mit AcOEt verdünnt und normal aufgearbeitet (ges. NaHCO₃ Lsg.). FC (AcOEt/Hexan 1:2 \rightarrow 1:1) ergab 18 (794 mg, 39%) als farbloses Öl und 19 (822 mg, 41%) als farblose Kristalle.

Daten von **18**: R_{f} (AcOEt/Hexan 1:1) 0,45. $[\alpha]_{D}^{25} = +54,2 (c = 1,1)$. IR (KBr): 2960m, 2920m, 2870m, 1450w, 1370w, 1360w, 1340w, 1320w, 1260m, 1200m, 1090s, 1060s, 1030s, 1010s, 950w, 910w, 870w. ¹H-NMR (400 MHz, CDCl₃): 7,35-7,16 (m, 20 arom. H); 4,80, 4,58 (AB, J = 11,7, PhCH₂); 4,56, 4,51 (AB, J = 11,8, PhCH₂); 4,49 (teilweise verdecktes *dd*, $J(P,H) \approx 10, J \approx 3$; Einstrahlen bei ³¹P: *d*, J = 3, H–C(1⁻)); 4,49, 4,46 (AB, J = 11,7, PhCH₂); 4,49 (teilweise verdecktes *dd*, $J(P,H) \approx 10, J \approx 3$; Einstrahlen bei ³¹P: *d*, J = 3, H–C(1⁻)); 4,49, 4,46 (AB, J = 11,7, PhCH₂); 4,49 (teilweise verdecktes *dd*, $J(P,H) \approx 10, J \approx 3$; Einstrahlen bei ³¹P: *d*, J = 3, H–C(1⁻)); 4,49, 4,46 (AB, J = 11,7, PhCH₂); 4,49 (teilweise verdecktes *dd*, $J(P,H) \approx 10, J \approx 3$; Einstrahlen bei ³¹P: *d*, J = 3, H–C(1⁻)); 4,49, 4,46 (AB, J = 11,7, PhCH₂); 4,49 (teilweise verdecktes *dd*, $J(P,H) \approx 10, J \approx 3$; Einstrahlen bei ³¹P: *d*, J = 10, 4, 4, 46 (AB, J = 11,7, PhCH₂); 4,41 (*dd*, J(P,H) = 3,7, J = 10,4; Einstrahlen bei ³¹P: *d*, $J = 10,4, H_{ax}$ –C(4), H_{ax}–C(4), H_{ax}

PhCH₂); 71,62 (*t*, PhCH₂); 68,34 (*dd*, J(P,C) = 165,5, C(1['])); 65,41 (*t*, C(6['])); 32,18 (*d*, J(P,C) = 7,6, C(5)); 22,15 (*q*, Me); 20,56 (*q*, Me). ³¹P-NMR (81 MHz, CDCl₃): 13,87. CI-MS: 695,3 (18, $[M + Na]^+$)), 674,4 (42), 673,3 (100, $[M + 1]^+$). Anal. ber. für C₁₀H₄SO₂P (672,72): C 69,63, H 6,74; gef.: C 69,54, H 6,92.

Daten von **19**: R_t (AcÕEt/Hexan 1:1) 0,40. Schmp. 82–84° (AcOEt/Hexan). $[\alpha]_D^{SS} = +8,6$ (c = 1). IR (KBr): 3440m, 3080w, 3060w, 3020m, 2960m, 2920m, 2870m, 1600w, 1590w, 1540w, 1500m, 1470m, 1450s, 1400w, 1370s, 1330w, 1310w, 1270s, 1210m, 1150s, 1130s, 1100s, 1090s, 1060s, 1030s, 1010s, 990s, 950m, 910m, 880w, 850s, 830s, 790m, 780m, 740s, 700s. ¹H-NMR (400 MHz, CDCl₃): 7,47-7,22 (m, 20 arom. H); 5,03, 4,58 ($AB, J = 11,6, PhCH_2$); 5,00, 4,78 ($AB, J = 9,5, PhCH_2$); 4,79, 4,75 ($AB, J = 11,8, PhCH_2$); 4,45 ($s, PhCH_2$); 4,40 (br. $d, J \approx 10,7, H_{ax}$ –C(4), H_{ax} –C(6)); 4,30 ($q, J(P,H) \approx 10,2, J \approx 10,2$; Einstrahlen bei ³¹P: $t, J \approx 10,2, H-C(2')$); 3,93 (t, J(P,H) = 10,1; Einstrahlen bei ³¹P: d, J = 10,1, H-C(1')); 3,925 (d, J = 2,2, H-C(4')); 3,91 (ddd, J(P,H) = 17,1, J = 10,5, 2,5; Einstrahlen bei ³¹P: d, J = 10,5, 2,5; on MHz, CDCl₃): 138,77 (s); 138,26 (s); 138,13 (s); 137,65 (s); 128,90–127,46 (mehrere d); 84,13 (dd, J(P,C) = 16,3,6, C(1')); 75,53 ($t, PhCH_2$); 75,02 (dd, J(P,C) = 6,6, C(4), C(6)); 78,27 (dd, J(P,C) = 16,2); 76,92 (dd, J(P,C) = 163,6, C(1')); 75,53 ($t, PhCH_2$); 75,02 (dd, J(P,C) = 2,2); 74,31 ($t, PhCH_2$); 73,84 (d); 73,52 ($t, PhCH_2$); 72,75 ($t, PhCH_2$); 69,14 (t, C(6')); 32,15 (d, J(P,C) = 2,2); 74,31 (100, [M + 1)⁺). Anal. ber. für $C_{30}H_{4x}O_8P$ (672,72): C 69,63, H 6,74; gef.: C 69,58, H 6,61.

2,3,4,6-Tetra-O-benzyl-A-D-galactopyranosylphosphonsäure-diphenylester (20). Eine Lsg. von 12 (290 mg, 0,5 mmol) in MeCN (1,0 ml) wurde gleichzeitig mit 14 (0,2 ml, 0,75 mmol) und Me₂SiOTf (0,11 ml, 0,55 mmol) tropfenweise versetzt und 5 min gerührt. Nach Zugabe von MeOH (1 ml) ergaben Eindampfen und FC (AcOEt/ Hexan 1:3) des Rückstandes 20 (215 mg, 61%). Farblose Kristalle. R_c (AcOEt/Hexan 3:1) 0,50. Schmp. 99-101°. IR (KBr): 3060w, 3020w, 2940w, 2900w, 1590m, 1490s, 1450m, 1370m, 1360w, 1340w, 1310w, 1280m, 1260w, 1240w, 1210s, 1190s, 1160m, 1150m, 1120s, 1100s, 1090s, 1070m, 1050m, 1020m, 1000w, 990w, 940s, 930s, 910m, 800w, 770m, 750m, 740s, 700s. 'H-NMR (400 MHz, CDCl₂): 7,39-7,08 (m, 30 arom. H); 4,76 (dd, $J \approx 4,8$, 12,1,H-C(1)); 4,75,4,54 (AB, J=11,6, PhCH₂); 4,73,4,62 (AB, J=11,7, PhCH₂); 4,71,4,67 (AB, J=11,9, PhCH₂); 4,47, 4,42 (*AB*, J = 11.9, PhCH₂); 4,40–4,35 (*m*; Einstrahlen bei 4,07: *t*, J = 6,1; Einstrahlen bei 3,58: *d*, $J \approx 2,5$; Einstrahlen bei 4,21: NOE (5%), H–C(5)); 4,31 (ddd, J(P,H) = 24,0, J = 7,7, 5,2; Einstrahlen bei 4,76: dd, J = 24,0, bei 4,38: NOE (4%), H–C(3)); 4,07 (t, J = 2,9; Einstrahlen bei 4,21: d, J = 2,9; Einstrahlen bei 4,38: NOE (7%); Einstrahlen bei 4,21: NOE (5%), H-C(4)); 3,58 (d, J = 6,1; Einstrahlen bei 4,38: NOE (4%), 2 H-C(6)). ¹³C-NMR (50 MHz, CDCl₂): 150,58 (*d*, *J*(P,C) = 9,6); 150,00 (*d*, *J*(P,C) = 9,6); 138,25 (*s*, 2C); 138,00 (*s*); 137,65 (*s*); 129,38 (dd, J(P,C) = 9, 6, 4C); 129, 18-127, 28 (mehrere d); 124, 91 (dd, J(P,C) = 9, 6, 2C); 120, 84 (dd, J(P,C) = 4, 7, 2C);120,75 (dd, J(P,C) = 5,5, 2C); 77,08 (dd, J(P,C) = 2,3); 75,34 (dd, J(P,C) = 5,1); 75,12 (d); 73,75 (d); 73,60 (t, 2)); 75,12 (d); 75,12 (d); 73,75 (d); 73,60 (t, 2)); 75,12 (d); 75,12 PhCH₂); 73,53 (*t*, PhCH₂); 73,05 (*t*, PhCH₂); 72,89 (*t*, PhCH₂); 69,99 (*dd*, J(P,C) = 160,5, C(1)); 67,11 (*t*, C(6)). ³¹P-NMR (162 MHz, CDC1,): 14,23. CI-MS: 775,5 (50), 774,5 (100, [M+NH₄]⁺), 758,5 (37), 774,5 (71, [M+1]⁺). Anal. ber. für C₄₅H₄₅O₆P (756,79): C 73,00, H 6,00; gef.: C 72,75, H 5,81.

 β -D-Galactopyranosylphosphonsäure-dimethylester (21). Eine Suspension von 17 (2,8 g, 4,4 mmol) und 10% Pd/C (280 mg) in MeOH (70 ml) wurde bei 8 bar H, 48 h intensiv gerührt und dann durch Celite filtriert. Das Filtrat wurde eingedampft und der Rückstand aus MeOH/Et₂O kristallisiert: 21 (1,1 g, 92%). Farblose Kristalle. R, (AcOEt/i-PrOH/H, O 9:4:2) 0.25. Schmp. 133-135° (MeOH/Et₂O). $[\alpha]_{D}^{2s} = +40.5$ (c = 1.5, D₂O). IR (KBr): 3460-3220s (br.), 2960w, 2940w, 2900w, 2850w, 1660w, 1560w, 1540w, 1450w, 1340w, 1230m, 1210m, 1190w, 1140m, 1100m, 1070s, 1050s, 1040s, 990w, 870w, 840m, 830m, 770m, 730w, 700w. ¹H-NMR (400 MHz, D₂O): 3,86 (dt, $J(P,H) \approx 0.9, J \approx 3.4, 0.9$; Einstrahlen bei ³¹P: br. d, J = 3.4, H-C(4); 3.78 (q, $J(P,H) = 9.9, J \approx 9.9$; Einstrahlen bei ^{31}P : t, $J \approx 9.9$, H–C(2)); 3.73 (d, J(P,H) = 10,7, MeO); 3.72 (d, J(P,H) = 10,8, MeO); 3.68 (dd, J(P,H) = 9,4, J = 10,5; Einstrahlen bei ³¹P: d, J = 10.5, H-C(1); 3,65 (dd, J = 12,4, 8,4, H-C(6)); 3,60–3,54 (m, H-C(5), H-C(6)); 3,51 (ddd, J(P,H) = 1, 1, J = 9, 4, 3, 4; Einstrahlen bei ³¹P: dd, J = 9, 4, 3, 4, H-C(3)). 'H-NMR (300 MHz, $(D_{c})DMSO$): 4,92 (d, J = 5,5, mit D₂O austauschbar, OH); 4,77 (br. d, J = 4,4, mit D₂O austauschbar, OH); 4,56 (br. t, $J \approx 5,5$, mit D₂O austauschbar, OH-C(6)); 4,92 (d, J = 3,8, mit D₂O austauschbar, OH); 3,77-3,58 (m, 2H); 3,66 (d, J(P,H) = 10,2, MeO; 3,64 (d, J(P,H) = 10,8, MeO); 3,52–3,38 (m, 4H); 3,38–3,23 (m, 2H; nach Zugabe von D₂O: 3,54, br. t, J = 5,8, H-C(5); 3,27 (br. dd, J = 9,5, 2,9, H-C(3)). ¹³C-NMR (50 MHz, D,O): 81,46 (dd, J(P,C) = 15,5); 74,58 (*dd*, *J*(P,C) = 170,6, C(1)); 74,52 (*dd*, *J*(P,C) = 18,0); 69,34 (*d*); 67,30 (*dd*, *J*(P,C) = 3,1); 61,78 (*t*, C(6)); 54,63(dq, J(P,C)=6,7, MeO); 54,39 (dq, J(P,C)=6,7, MeO).³¹P-NMR (81 MHz, D₂O): 25,48. CI-MS (NH₂): 290,4 (100, $[M + NH_{a}]^{+}$, 273,3 (79, $[M + 1]^{+}$). Anal. ber. für C₈H₁₇O₈P (272,19): C 35,30, H 6,30; gef.: C 35,04, H 6,38.

6-Bromo-6-deoxy-3,4-O-isopropyliden-β-D-galactopyranosylphosphonsäure-dimethylester (22). Eine Lsg. von 8 (1,25 g, 4,0 mmol) in Tetramethylharnstoff (10 ml) wurde bei RT. mit PPh₄ (2,1 g, 8,0 mmol) und dann mit

NBS (umkrist. aus H₂O, 1,14 g, 4,1 mmol) versetzt und 40 min bei 80° gerührt (\rightarrow braun). Nach Zugabe von MeOH (5 ml) wurde das Lsgm. i. HV. abdestilliert. Der Rückstand wurde in MeOH (20 ml) aufgenommen, unter Rühren auf 0° gekühlt, mit Amberlite IR-120 (H*-Form) angesäuert (pH ca. 1-2) und schnell filtriert. Das Filtrat wurde bei 0° mit ca. 3% Lsg. von CH, N₂ in Et₂O (10 ml) versetzt, 10 min bei 0° gerührt und eingedampft. Der Rückstand wurde in Aceton (10 ml) gelöst, mit 2,2-Dimethoxypropan (10 ml) und Camphersulfonsäure (46 mg, 0,2 mmol) versetzt und 4 h bei RT. gerührt (\rightarrow braune Lsg.). Nach Neutralisierung mit Et_nN (pH ca. 7–8) und Eindampfen ergaben normale Aufarbeitung (CHCl₄, ges. NaHCO₃-Lsg.) und FC (Et₂O/MeOH 97:3 \rightarrow 94:6) 22 (652 mg, 43,5%). Farblose Nadeln. R_{f} (CHCl₃/MeOH 7:3) 0,35. Schmp. 120–122° (Et,O/Hexan). $[\alpha]_{25}^{25}$ =+66,0 (c = 1,1). IR (KBr): 3420s, 3000w, 2960w, 2910w, 2860w, 1450w, 1380m, 1370m, 1350w, 1320w, 1310w, 1270s, 1250s, 1220m, 1160w, 1140m, 1100m, 1060s, 1050s, 1040s, 1010m, 960w, 890w, 870m, 860m, 830w, 820w, 790m, 770w, 740w, 660w. ¹H-NMR (400 MHz, CDCl₂): 4,30 (*ddd*, J = 5, 5, 2, 2, 1, 0; Einstrahlen bei 4,08: *dd*, $J \approx 2, 2, 1, 0$; Einstrahlen bei ³¹P: dd, J = 5, 5, 2, 2, H-C(4); 4,08 (br. $t, J \approx 6, 3$; Einstrahlen bei 4,30: br. d, J = 7, 0; Einstrahlen bei ³¹P: dd, J= 7,0, 5,5, H-C(3)); 3,96-3,90 (m, 2 H; Einstrahlen bei 4,30: veränderte Signale; Einstrahlen bei 4,08: veränderte Signale; Einstrahlen bei 3,57: veränderte Signale; Einstrahlen bei 3,50: veränderte Signale; Einstrahlen bei 31P: 3,92 (dd, J = 10.6, 7.0, (zwei signale sichtbar) H-C(2)); 3.91, (td, J = 6.7, 2.2, H-C(5)); 3.91 (d, J(P,H) = 10.5;Einstrahlen bei ³¹P: s, MeO); 3,86 (d, J(P,H) = 10,7; Einstrahlen bei ³¹P: s, MeO); 3,70–3,60 (br. s, austauschbar mit D,O, OH); 3,57 (d, J = 6,7, 2 H–C(6)); 3,50 (t, J = 10,5; Einstrahlen bei ³¹P: d, J = 10,7, H–C(1)); 1,53 (s, Me); 1,36 (*s*, Me). ¹³C-NMR (50 MHz, CDCL): 114,56 (*s*, Me₂C); 78,67 (*dd*, *J*(P,C) = 17,3); 77,68 (*dd*, *J*(P,C) = 16,4); 74,50 (dd, J(P,C) = 168,6, C(1)); 72,94 (d); 68,34 (d); 54,26 (q, J(P,C) = 6,7, MeO); 54,15 (dq, J(P,C) = 6,8, MeO); 29,59 (t, C(6)); 27,66 (q, Me); 25,97 (q, Me). ³¹P-NMR (50 MHz, CDCl₂): 21,98. CI-MS: 377,2 (86), 375,1 (100, $[M + 1]^+$). Anal. ber. für C₁₁H₂₀BrO₂P (375,15): C 35,21, H 5,37, Br 21,30; gef.: C 35,44, H 5,34, Br 21,11.

6-Bromo-6-deoxy-2-O-(diphenoxyphosphoryl)-3,4-O-isopropyliden- β -D-galactopyranosylphosphonsäuredimethylester (23). Eine Lsg. von 22 (140 mg, 0,37 mmol) in Pyridin (1,4 ml) wurde bei 0° mit (PhO),P(O)Cl (240 µl, 1,1 mmol) versetzt und 54 h bei RT. gerührt. Nach Zugabe von MeOH (3 ml) und Eindampfen wurde normal aufgearbeitet (CHCl₃, ges. NaHCO₃-Lsg.). FC (AcOEt/Hexan 1:1 \rightarrow 2:1) ergab 23 (94 mg, 41%). Farbloses Öl. R_{f} (AcOEt/Hexan 2:1) 0,4. [α]_D²⁼ +23,3 (c = 3). IR (CHCl₃): 3000m, 2960m, 2940w, 2800w, 1590s, 1485s, 1455w, 1385m, 1375m, 1310m, 1290s, 1245s, 1180s, 1160s, 1135s, 1110s, 1080s, 1070s, 1040s, 1025s, 1010s, 960s, 910s, 860m, 830m. ¹H-NMR (400 MHz, CDCl₁): 7,36–7,16 (m, 10 arom. H); 5,02 (dddd, J(P,H) = 10,4, 9,3, J = 7,6, 5,8, H-C(2); 4,41 (t, J = 5,9, H-C(3)); 4,32 (ddd, J(P,H) = 0,5, J = 5,9, 2,1, H-C(4)); 3,94 (dd, J(P,H) = 12,5, J = 7,6, H-C(1); 3,89 (td, J = 6,8, 2,1, H-C(5)); 3,82 (d, J(P,H) = 10,6, MeO); 3,77 (d, J(P,H) = 10,8, MeO); 3,56 (dd, J = 6,8, 2,1, H-C(5)); 3,82 (d, J(P,H) = 10,6, MeO); 3,77 (d, J(P,H) = 10,8, MeO); 3,56 (dd, J = 6,8, 2,1, H-C(5)); 3,82 (d, J(P,H) = 10,6, MeO); 3,77 (d, J(P,H) = 10,8, MeO); 3,56 (dd, J = 6,8, 2,1, H-C(5)); 3,82 (d, J(P,H) = 10,6, MeO); 3,77 (d, J(P,H) = 10,8, MeO); 3,56 (dd, J = 6,8, 2,1, H-C(5)); 3,82 (d, J(P,H) = 10,6, MeO); 3,77 (d, J(P,H) = 10,8, MeO); 3,56 (dd, J = 6,8, 2,1, H-C(5)); 3,82 (d, J(P,H) = 10,6, MeO); 3,77 (d, J(P,H) = 10,8, MeO); 3,56 (dd, J = 6,8, 2,1, H-C(5)); 3,82 (d, J(P,H) = 10,6, MeO); 3,77 (d, J(P,H) = 10,8, MeO); 3,56 (dd, J = 6,8, 2,1, H-C(5)); 3,82 (d, J(P,H) = 10,8, MeO); 3,56 (dd, J = 6,8, 2,1, H-C(5)); 3,82 (d, J(P,H) = 10,8, MeO); 3,86 (dd, J = 6,8, 2,1, H-C(5)); 3,82 (d, J(P,H) = 10,8, MeO); 3,77 (d, J(P,H) = 10,8, MeO); 3,76 (dd, J = 6,8, 2,1, H-C(5)); 3,82 (d, J(P,H) = 10,8, MeO); 3,77 (d, J(P,H) = 10,8, MeO); 3,76 (dd, J = 6,8, 2,1, H-C(5)); 3,82 (d, J(P,H) = 10,8, MeO); 3,77 (d, J(P,H) = 10,8, MeO); 3,76 (dd, J = 6,8, 2,1, H-C(5)); 3,82 (d, J(P,H) = 10,8, MeO); 3,82 (d, J(P,H) = 10,8, MeO); 3,77 (d, J(P,H) = 10,8, MeO); 3,76 (dd, J = 6,8, 2,1, H-C(5)); 3,82 (d, J(P,H) = 10,8, MeO); 3,77 (d, J(P,H) = 10,8, MeO); 3,76 (dd, J = 6,8, HA); 3,82 (d, J(P,H) = 10,8, HA); = 10, 4, 6, 5, H-C(6); 3, 53 (dd, J = 10, 4, 7, 0, H-C(6)); 1, 53 (s, Me); 1, 34 (s, Me).¹³C-NMR (150,9 MHz, CDCl₂): 150,53 (*d*, *J*(P,C) \approx 5,2, 1 arom. C); 150,49 (*d*, *J*(P,C) \approx 6,5, 1 arom. C); 129,66 (*d*, 2 arom. C); 129,60 (*d*, 2 arom. C); 125,31 (d, 2 arom. C); 120,23 (dd, J(P,C) = 3,8, 2 arom. C); 120,21 (dd, J(P,C) = 4,0, 2 arom. C); 110,74 (s, $Me_{,C}$; 77,66 (dd, J(P,C) = 15,5); 76,13 (dd, J(P,C) = 11,1); 75,54 (dd, J(P,C) = 6,2); 74,36 (ddd, J(P,C) = 173,9, 173,9); 76,16 (dd, J(P,C) = 173,9); 76,17 (dd, J(P,C) = 173,9); 76,18 (dd, J(P,C) = 10,10); 75,18 (dd, J(P,C) = 10,10); 76,18 (dd, J(P 8,4, C(1)); 72,72 (*d*); 54,16 (*dq*, J(P,C) = 6,4, MeO); 53,33 (*dq*, J(P,C) = 6,6, MeO); 29,00 (*t*, C(6)); 27,09 (*q*, Me); 25,91 (q, Me). ³¹P-NMR (242 MHz, CDCl₃): 18,93 (P-C(1)); -13,54 (PO-C(2)). Anal. ber. für C₂₁H₂₀BrO₁₀P₂ (607,32): C 45,48, H 4,78; gef.: C 45,57, H 4,71.

6-Deoxy-6-(dimethoxyphosphoryl)-2-O-(diphenoxyphosphoryl)-3,4-O-isopropyliden- β -Dgalactopyranosylphosphonsäure-dimethylester (24). Eine Lsg. von 23 (450 mg, 0,74 mmol) in P(OMe), (5 ml) wurde unter Ar bei 110° gehalten und alle 24 h mit P(OMe), (je 2 ml) versetzt. Eindampfen nach 110 h und FC $(AcOEt/MeOH 19:1 \rightarrow 9:1)$ ergaben 24 (324 mg, 69%). Farbloses Öl. R_t (AcOEt/MeOH 9:1) 0.25. $[\alpha]_D^{2s} = +27,4$ (c = 3,5). IR (CHCl₂): 3000m, 2960w, 1640w, 1590m, 1490m, 1450w, 1340m, 1280s, 1110m, 1060s, 1030s, 960s, 900m, 880m, 860m. 'H-NMR (400 MHz, CDCl.): 7,34–7,14 (m, 10 arom. H); 4,95 (dddd, J(P,H) = 10,3, 9,2, J = 8,3, 6,1; Einstrahlen bei 4,33: $q, J \approx 9,2$, H–C(2)); 4,33 (t, J = 5,9; Einstrahlen bei 4,95: d, J = 5,9, H–C(3)); 4,22 (dd, J = 5, 8, 2, 0; Einstrahlen bei 4,33: br. s, H–C(4)); 4,06 (dtd, J(P,H) = 8, 9, J = 6, 8, 2, 1, H–C(5)); 3,88 (dd, J(P,H))=12,0, J = 8,3; Einstrahlen bei 4,95: d, J = 12,0, H-C(1); 3,77 (d, J(P,H) = 10,2, MeO); 3,75 (d, J(P,H) = 10,8, 2MeO); 3,74 (d, J(P,H) = 10,2, MeO); 2,28 (dd, J(P,H) = 18,3, J = 7,0, 2 H-C(6)); 1,52 (s, Me); 1,32 (s, Me). ¹³C-MeO); 3,74 (d, J(P,H) = 10,2, MeO); 3,74 (d, J(P,H) = 10,2, MeONMR (150,9 MHz, CDCl., ³¹P-entkoppelt): 150,59 (s, 1 arom. C); 150,55 (s, 1 arom. C); 129,65 (d, 2 arom. C); 129,57 (d, 2 arom. C); 125,27 (d, 1 arom. C); 125,25 (d, 1 arom. C); 120,30 (d, 2 arom. C); 120,24 (d, 2 arom. C); 110,40 (s, Me₂C); 76,20 (d); 74,63 (d); 74,24 (d); 73,83 (d); 73,10 (d); 53,74 (q, MeO); 53,35 (q, MeO); 52,73 (q, MeO); 52,35 (q, MeO); 27,27 (t, C(6)); 26,88 (q, Me); 25,97 (q, Me). ³¹P-NMR (162 MHz, CDCl₂): 29,57 (P–C(6)); 19,28 (P-C(1)); -13,39 (PO-C(2)). CI-MS (NH₃): 654,4 (10, [M + NH₄]*), 638,3 (28), 637,3 (100, [M + 1]*), 329,1 (39), 282,2 (75), 265,1 (50), 221,1 (63). Anal. ber. für C₂₅H₃₅O₁₁P₃ (636,45): C 47,17, H 5,54; gef.: C 46,80, H 5,80.

Hexanatrium-(6-deoxy-6-C,2-O-diphosphonato-\beta-D-galactopyranosyl)phosphonat (**3a**). Eine Lsg. von **24** (190 mg, 0,3 mmol) in MeOH (40 ml) und H₂O (2 ml) wurde mit Aktivkohle (20 mg) versetzt und warm durch *Celite* filtriert. Das Filtrat wurde mit PtO₂ (50 mg) versetzt und bei 8 bar H₂ 12 h kräftig gerührt (Verschwinden aller UV-

aktiven Produkte). Nach Filtrieren durch *Celite* und Eindampfen des Filtrates wurde der Rückstand 24 h i. V. getrocknet, in CH₂Cl₂ (20 ml) aufgenommen, auf 0° gekühlt, mit Me₃SiBr (934 µl, 7,6 mmol) versetzt und 24 h bei RT. gerührt. Nach Abkühlen auf 0°, Versetzen mit MeOH (20 ml) und Eindampfen der Lsg. wurde der Rückstand chromatographiert (SiO₂, i-PrOH/konz. NH₃-Lsg./H₂O 4:3:1 \rightarrow 5:5:3). Die produkthaltigen Fraktionen wurden in H₂O (50 ml) aufgenommen und mit *Amberlite IR-120* (H⁺-Form) angesäuert (pH *ca.* 1). Das Gemisch wurde filtriert, mit *Dowex CCR-2* (Na⁺ Form) neutralisiert (pH *ca.* 7–8) und durch *Celite* filtriert. Lyophilisieren des Filtrates ergab amorphes **3a** (112 mg, 72%). *R*₁ (i-PrOH/konz. NH₃-Lsg./H₂O 5:5:3) O.1. Schmp. > 260°. $[\alpha]_D^{25} = +12,3$ (c = 0,4 H₂O). IR (KBr): 3440s (br.), 1730w, 1640m, 1560m, 1540w, 1440w, 1385m, 1120s (br.), 1110m, 970w, 800w, 760w, 730w, 710w, 620m. ¹H-NMR (400 MHz, D₂O): 4,26 (*quint.*, $J \approx 9,5$, H-C(2)); 3,96 (d, J = 3,2, 2 H-C(6)). ¹³C-NMR (150,9 MHz, D₂O). ¹⁹P-entkoppelt): 79,26 (d); 78,95 (d); 73,91 (d; 73,71 (d); 33,66 (t, C(6)). ³¹P-NMR (162 MHz, D₂O): 19,46 (P-C(6)); 14,05 (P-C(1)); 4,99 (PO-C(2)). FAB-MS: 520,9 (11, [M + 1]⁺), 498,9 (52, [M - Na + 2]⁺), 476,9 (100, [M - 2Na + 3]⁺), 454,9 (80, [M - 3Na + 4]⁺), 432,9 (33, [M - 4Na + 5]⁺), 356,9 (33), 349,0 (41), 327,0 (73), 325,0 (31), 321,1 (45), 319,0 (41), 309,0 (32).

LITERATURVERZEICHNIS

- [1] A. A. Abdel-Latif, Pharmacol. Rev. 1986, 38, 227.
- [2] R. H. Michel, C. J. Kirk, L. M. Jones, C. P. Downes, J. A. Creba, *Philos. Trans., Roy. Soc. London, Ser.* B1981, 296, 123.
- [3] C. P. Downes, M. C. Mussat, Biochem. J. 1982, 203, 169.
- [4] S. T. Safrany, R. J. H. Wojcikiewicz, J. Strupish, S. R. Nahorski, D. Dubreuil, J. Cleophax, S. D. Gero, B. V. L. Potter, FEBS Letters 1991, 278, 252.
- [5] P. Westerduin, H. A. M. Willems, C. A. A. van Boeckel, Tetrahedron Lett. 1990, 31, 6915.
- [6] S. L. Bender, R. J. Budhu, J. Am. Chem. Soc. 1991, 113, 9883.
- [7] V. A. Estevez, G. D. Prestwich, J. Am. Chem. Soc. 1991, 113, 9885.
- [8] S.-K. Chung, S.-H. Moon, J. Chem. Soc., Chem. Commun. 1992, 77.
- [9] R. R. Schmidt, H. Gaden, H. Jatzke, Tetrahedron Lett. 1990, 31, 327.
- [10] S. Hashimoto, T. Honda, S. Ikegami, J. Chem. Soc., Chem. Commun. 1989, 685.
- [11] R. H. Michell, Nature 1986, 319, 176.
- [12] B. V. L. Potter, Nat. Prod. Rep. 1990, 7, 1.
- [13] P. W. Majerus, T. M. Connolly, H. Deckmyn, T. S. Ross, T. E. Bross, H. Ishii, V. S. Bansal, D. B. Wilson, Science 1986, 234, 1519.
- [14] B. S. Griffin, A. Burger, J. Am. Chem. Soc. 1956, 78, 2336.
- [15] S. Inokawa, T. Tsuchiya, H. Yoshida, T. Ogata, Bull. Chem. Soc. Jpn. 1970, 43, 3224.
- [16] P. Le Marechal, C. Froussios, M. Level, R. Azerad, Carbohydr. Res. 1981, 94, 1.
- [17] G. M. Blackburn, Chem. Ind. (London) 1981, 134.
- [18] P. C. Crofts, G. M. Kosolapoff, J. Am. Chem. Soc. 1953, 75, 5738.
- [19] F. W. Bennett, H. J. Emeléus, R. N. Haszeldine, J. Chem. Soc. 1954, 3598.
- [20] S. R. Nahorski, B. V. L. Potter, Trends Pharmacol. Sci. 1989, 10, 139.
- [21] A. Vasella, Pure Appl. Chem. 1991, 63, 507.
- [22] K. Briner, A. Vasella, Helv. Chim. Acta 1987, 70, 1341.
- [23] A. Dessinges, A. Vasella, Carbohydr. Res. 1988, 174, 47.
- [24] R. Meuwly, A. Vasella, Helv. Chim. Acta 1986, 69, 25.
- [25] K. Wallimann, A. Vasella, Helv. Chim. Acta 1990, 73, 1359.
- [26] M. M. Vaghefi, R. J. Bernacki, N. K. Dalley, B. E. Wilson, R. K. Robins, J. Med. Chem. 1987, 30, 1383.
- [27] R. Engel, Chem. Rev. 1977, 77, 349.
- [28] G. Baudin, Dissertation, Universität Zürich, 1991.
- [29] M.A. Polokoff, G.H. Bencen, J. P. Vacca, S. J. deSolms, S. D. Young, J. R. Huff, J. Biol. Chem. 1988, 11922.
- [30] S. V. Ley, M. Parra, A. J. Redgrave, F. Sternfeld, A. Vidal, Tetrahedron Lett. 1989, 30, 3557.
- [31] R. L. Whistler, C.-C. Wang, J. Org. Chem. 1968, 33, 4455.
- [32] H. Yamamoto, T. Hanaya, S. Inokawa, K. Seo, M.-A. Armour, T. T. Nakashima, *Carbohydr. Res.* 1983, 114, 83.
- [33] M. F. Wang, M. M. L. Crilley, B. T. Golding, T. McInally, D. H. Robinson, A. Tinker, J. Chem. Soc., Chem. Commun. 1991, 667.

1024

- [34] a) R. L. Halcomb, S. J. Danishefsky, J. Am. Chem. Soc. 1989, 111, 6661; b) W. Adam, Y.-Y. Chan, D. Cremer, J. Gauss, D. Scheutzow, M. Schindler, J. Org. Chem. 1987, 52, 2800; c) W. Adam, J. Bialas, L. Hadjiarapoglou, Chem. Ber. 1991, 124, 2377.
- [35] R. Bisaz, Dissertation, ETH-Zürich No. 5500, 1975.
- [36] T. Gracza, A. Vasella, unpublished results.
- [37] A. J. Ratcliffe, B. Fraser-Reid, J. Chem. Soc., Perkin Trans. 1 1990, 747; ibid. 1989, 1805.
- [38] P. W. Austin, F. E. Hardy, J. G. Buchanan, J. Baddiley, J. Chem. Soc. 1965, 1419.
- [39] H. Paulsen, Angew. Chem. 1982, 94, 184.
- [40] D. W. White, R. D. Bertrand, G. K. McEwen, J. G. Verkade, J. Am. Chem. Soc. 1970, 92, 7125.
- [41] L. Maier, U.S. Patent 4 351 779, 1982; (CA: 98, 16848s).
- [42] J. Thiem, B. Meyer, H. Paulsen, Chem. Ber. 1978, 111, 3325.
- [43] A. £opusinski, B. Bernet, A. Linden, A. Vasella, Helv. Chim. Acta 1993, 76, 94.
- [44] L. D. Quin, in 'Phosphorus-31 NMR Spectroscopy in Stereochemical Analysis. Organic Compounds and Metal Complexes', Eds. J. G. Verkade and L. D. Quin, VCH Publishers, Deerfield Beach, 1987, pp. 391– 424.
- [45] B. Bernet, Dissertation, ETH-Zürich No. 6416, 1979.
- [46] J. P. Clayton, R. S. Oliver, N. H. Rogers, T. J. King, J. Chem. Soc., Perkin Trans. 1 1979, 838.
- [47] J. G. Buchanan, M. E. Chacón-Fuertes, A. R. Edgar, S. J. Moorhouse, D. I. Rawson, R. H. Wightman, *Tetrahedron Lett.* 1980, 21, 1793.
- [48] A. Lipták, P. Fügedi, J. Kerekgyártó, P. Nanasi, Carbohydr. Res. 1983, 113, 125.
- [49] G. Catelani, F. Colonna, A. Marra, *Carbohydr. Res.* 1988, 182, 297; P. L. Barili, G. Berti, G. Catelani, F. Colonna, A. Marra, *Tetrahedron Lett.* 1986, 27, 2307.
- [50] B. Bernet, A. Vasella, Helv. Chim. Acta 1979, 62, 2411.
- [51] S. Hanessian, M. M. Ponpipom, P. Lavellée, Carbohydr. Res. 1972, 24, 45.
- [52] A. B. Foster, W. G. Overend, M. Stacey, J. Chem. Soc. 1951, 980.
- [53] A. Michaelis, R. Kaehne, Ber. Dtsch. Chem. Ges. 1898, 31, 1048.
- [54] C. E. McKenna, J. Schmidhauser, J. Chem. Soc., Chem. Commun. 1979, 739.
- [55] C. E. McKenna, M. T. Higa, N. H. Cheung, M.-C. McKenna, Tetrahedron Lett. 1977, 155.
- [56] R. Meuwly, Dissertation, Universität Zürich, 1986.
- [57] L. Czollner, J. Kuszmann, A. Vasella, Helv. Chim. Acta 1990, 73, 1338.
- [58] S. Koto, N. Morishima, Y. Miyata, S. Zen, Bull. Chem. Soc. Jpn. 1976, 49, 2639.